Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37933117

RESUMO

A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.

2.
Nanotechnology ; 30(39): 395201, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31304917

RESUMO

We describe the fabrication and electrical characterization of all-silicon electrode devices to study the electronic properties of thin films of silicon nanocrystals (SiNCs). Planar, highly doped Si electrodes with contact separation of 200 nm were fabricated from silicon-on-insulator substrates, by combination of electron beam lithography and reactive ion etching. The gaps between the electrodes of height 110 nm were filled with thin-films of hexyl functionalized SiNCs (diameter 3 nm) from colloidal dispersions, via a pressure-transducing PDMS (polydimethylsiloxane) membrane. This novel approach allowed the formation of homogeneous SiNC films with precise control of their thickness in the range of 15-90 nm, practically without any voids or cracks. The measured conductance of the highly resistive SiNC films at high bias voltages up to 60 V scaled approximately linearly with gap width (5-50 µm) and gap filling height, with little device-to-device variance. We attribute the observed, pronounced hysteretic current-voltage (I-V) characteristics to space-charge-limited current transport, which-after about twenty cycles-eventually blocks the current almost completely. We propose our all-silicon device scheme and gap filling methodology as a platform to investigate charge transport in novel hybrid materials at the nanoscale, in particular in the high resistivity regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...